Quantifying Coulombic and solvent polarization-mediated forces between DNA helices.
نویسندگان
چکیده
One of the fundamental problems in nucleic acids biophysics is to predict the different forces that stabilize nucleic acid tertiary folds. Here we provide a quantitative estimation and analysis for the forces between DNA helices in an ionic solution. Using the generalized Born model and the improved atomistic tightly binding ions model, we evaluate ion correlation and solvent polarization effects in interhelix interactions. The results suggest that hydration, Coulomb correlation and ion entropy act together to cause the repulsion and attraction between nucleic acid helices in Mg(2+) and Mn(2+) solutions, respectively. The theoretical predictions are consistent with experimental findings. Detailed analysis further suggests that solvent polarization and ion correlation both are crucial for the interhelix interactions. The theory presented here may provide a useful framework for systematic and quantitative predictions of the forces in nucleic acids folding.
منابع مشابه
Toward the correction of effective electrostatic forces in explicit-solvent molecular dynamics simulations: restraints on solvent-generated electrostatic potential and solvent polarization
Despite considerable advances in computing power, atomistic simulations under nonperiodic boundary conditions, with Coulombic electrostatic interactions and in systems large enough to reduce finite-size associated errors in thermodynamic quantities to within the thermal energy, are still not affordable. As a result, periodic boundary conditions, systems of microscopic size and effective electro...
متن کاملOn the magnitude of the electrostatic contribution to ligand-DNA interactions.
A model based on the nonlinear Poisson-Boltzmann equation is used to study the electrostatic contribution to the binding free energy of a simple intercalating ligand, 3,8-diamino-6-phenylphenanthridine, to DNA. We find that the nonlinear Poisson-Boltzmann model accurately describes both the absolute magnitude of the pKa shift of 3,8-diamino-6-phenylphenanthridine observed upon intercalation and...
متن کاملSurface Recognition and Complexations Between Synthetic Poly(ribo)nucleotides and Neutral Phospholipids and Their Implications in Lipofection
Thermodynamic features related to preparation and use of self-assemblies formed between multilamellar and unilamellar zwitterionic liposomes and polynucleotides with various conformation and sizes are presented. The divalent metal cation or surfactant-induced adsorption, aggregation and adhesion between single- and double-stranded polyribonucleotides and phosphatidylcholine vesicles was followe...
متن کاملSurface Recognition and Complexations Between Synthetic Poly(ribo)nucleotides and Neutral Phospholipids and Their Implications in Lipofection
Thermodynamic features related to preparation and use of self-assemblies formed between multilamellar and unilamellar zwitterionic liposomes and polynucleotides with various conformation and sizes are presented. The divalent metal cation or surfactant-induced adsorption, aggregation and adhesion between single- and double-stranded polyribonucleotides and phosphatidylcholine vesicles was followe...
متن کاملThe fast multipole method and point dipole moment polarizable force fields.
We present an implementation of the fast multipole method for computing Coulombic electrostatic and polarization forces from polarizable force-fields based on induced point dipole moments. We demonstrate the expected O(N) scaling of that approach by performing single energy point calculations on hexamer protein subunits of the mature HIV-1 capsid. We also show the long time energy conservation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. B
دوره 117 24 شماره
صفحات -
تاریخ انتشار 2013